Raspacionin B, a Further Triterpenoid from the Mediterranean Sponge Raspaciona aculeata

G. Cimino, A. Crispino, A. Madaio, E. Trivellone, and M. Uriz
J. Nat. Prod., 1993, 56 (4), 534-538• DOI:
10.1021/np50094a013 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50094a013 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

RASPACIONIN B, A FURTHER TRITERPENOID FROM THE MEDITERRANEAN SPONGE RASPACIONA ACULEATA

G. Cimino, A. Crispino, A. Madaio,* E. Trivellone,
Istituto per la Cbimica di Molecole di Interesse Biologico del CNR, Via Toiano 6, 80072 Arco Felice (NA), Italy and M. URiz
Centre d'Estudios Avanzados, Cami de Santa Barbara, 17300 Blanes, Gerona, Spain

Abstract

A new triterpenoid, raspacionin B [4], has been isolated from the Mediterranean sponge Raspaciona aculeata. The structure and relative stereochemistry of 4 were elucidated by means of spectral methods, mainly 1D and 2D nmr. The absolute stereochemistry was proposed by comparison of its cd curve with those of related compounds. The triterpenoid skeleton of raspacionin B, characterized by the presence of a cyclopropane ring, is related to those of terpenoids co-occurring in the same sponge.

Recently chemical studies on the Mediterranean red sponge Raspaciona aculeata Johnston (order Axinellida, family Raspailiidae) led to the characterization of two new triterpenoids, raspacionin [1] and raspacionin A \{2] (1,2), structurally related to some triterpenoids found in the Red Sea sponge Siphonocalina siphonella (3-7). In fact, both the series of secondary metabolites display either one or two perhydrobenzoxepine systems.

The structures of $\mathbf{1}$ and $\mathbf{2}$ were suggested by analysis of their spectral data, their relative stereochemistries were secured by single crystal X-ray analysis (1,2), and, finally, their absolute stereochemistry was determined by application of high field ${ }^{1} \mathrm{H}-\mathrm{nmr}$ to Mosher's method (G. Cimino, R. de A. Epifanio, A. Madaio, R. Puliti, and E. Trivellone, unpublished results), already successfully applied to sipholenol A [3] by Kakisawa's group $(8,9)$.

A third triterpenoid, raspacionin B [4], co-occurs along with 1 and 2 in R. aculeata. In this paper we report the structural characterization of 4.

1

$3 \mathrm{X}=\beta-\mathrm{OH}, \mathrm{H}$
$5 X=O$

2

4

RESULTS AND DISCUSSION

Raspacionin B [4] was isolated as previously reported (2) by hplc [Spherisorb column ODS2, MeCN- $\mathrm{H}_{2} \mathrm{O}$ (8:2)] of the chromatographic fraction from R. aculeata extract containing as the main metabolite raspacionin A [2].

Table 1. Nmr Data (500 MHz) of Raspacionin B [4]. ${ }^{2}$

${ }^{2} \mathrm{CDCl}_{3} ;$ BRUKER AMX- 500 spectrometer. Chemical shifts referred to CHCl_{3} at 7.26 ppm and to CDCl_{3} at 77.00 .
${ }^{\text {b }}$ Assignments aided by ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HETCOR, HMQC, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HOHAHA, and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ spin decoupling experiments.
${ }^{\text {c }}$ Deduced by DEPT sequence.
${ }^{d}$ Assigned by analysis of the J-resolved and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ spin decoupling experiments.
${ }^{\text {e }}$ Values may be interchanged.

Raspacionin B [4] is an amorphous optically active powder ($[\alpha]^{25} \mathrm{D}+10.8^{\circ}$) with elementary composition $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{6}$, determined by hreims measurements on the fragment ion at $m / z 472.3146\left[\mathrm{M}-\mathrm{COMe}_{2}\right]^{+}$and from ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ data. Two ir bands at 1732 and $1714 \mathrm{~cm}^{-1}$ suggested the presene of different $\mathrm{C}=\mathrm{O}$ groups, further supported by the ${ }^{13} \mathrm{C}-\mathrm{nmr}$ resonances at $\delta 217.93,217.36$, and 170.05 .

Analysis of the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum (Table 1) confirmed the correlation of the carbon skeleton of 4 and raspacionin [1], suggesting for 4 a related structure characterized by two perhydrobenzoxepine rings linked by an ethylene bridge but displaying two ketone groups at $\mathrm{C}-4$ and $\mathrm{C}-21$. In fact, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and the HOHAHA experiments showed two isolated $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - systems (partial structures a and \mathbf{b}) both linked to a carbonyl group on the basis of diagnostic downfield resonances of some protons ($\mathrm{H}-3, \delta 3.23$ and $2.31 ; \mathrm{H}-22, \delta 3.22$ and 2.10). The HOHAHA experiment also revealed a pair of spin sequences indicating two isolated $-\mathrm{CHCH}_{2} \mathrm{CH}_{2}$ - partial structures \mathbf{c} and \mathbf{d}.

a

c

b

d

e

f

g

Seven singlets were observed in the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectra. Five of them were assigned, by 2D experiments (Table 1), to two methyls linked to an oxygenated tertiary carbon (C $20, \delta{ }^{13} \mathrm{C} 82.58$), one to the methyl of an acetoxy group ($\delta^{1} \mathrm{H}, 2.01$), one to an angular methyl ($\mathrm{C}-32, \delta{ }^{13} \mathrm{C} 12.41$) and, finally, one to a methyl geminal to an acetoxy group at $\mathrm{C}-15\left(\delta^{13} \mathrm{C} 83.79\right)$. On the basis of spectral data of model compounds and some diagnostic heterocorrelations, \mathbf{b}, \mathbf{c}, and \mathbf{d} were connected as shown by the partial structure e. A comparison with sipholenone [5] confirmed the suggested partial structure \mathbf{e}, since some relevant acetylation shifts were observed, in particular for $\mathrm{C}-15\left(\delta^{13} \mathrm{C}\right.$ 83.79; 71.39 in 5). Direct and long-range ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HETCOR experiments (Table 1) further supported partial structure \mathbf{e}. In particular the ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long-range correlations with a 10 Hz coupling displayed a series of diagnostic cross peaks (Table 1) connecting $\mathrm{C}-21$ ($\delta 217.36$) to $\mathrm{H}_{3}-30(\delta 1.28)$ and $\mathrm{H}-23(\delta 1.77)$; $\mathrm{C}-24(\delta 42.25)$ to $\mathrm{H}-14$ (δ 0.56), to $\mathrm{H}-23$ ($\delta 1.13$), and to $\mathrm{H}-17$ ($\delta 1.48$); $\mathrm{C}-18(\delta 80.05)$ to $\mathrm{H}-23(\delta 1.13)$ and H 16 ($\delta 2.82$); and, finally, $\mathrm{C}-15$ ($\delta 83.79$) to $\mathrm{H}_{3}-29$ ($\delta 1.47$) and $\mathrm{H}-16$ ($\delta 2.82$).

Relative stereochemistry at $\mathrm{C}-14, \mathrm{C}-15, \mathrm{C}-18$, and $\mathrm{C}-24$ was suggested by com-
parison with model compounds (1,2) and confirmed by nOe experiments which proved cis relationships between $\mathrm{H}-14, \mathrm{H}-18$, and $\mathrm{H}_{3}-29$ and by the upfield chemical shift values of $\mathrm{C}-32(\delta 12.41)$ and $\mathrm{C}-13(\delta 25.62)$ which supported their cis orientation.

The absence of further ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ couplings of the proton at $\mathrm{C}-12$ suggested, analogously to raspacionin \mathbf{A} [2], a quaternary nature for $\mathrm{C}-11$. The analysis of the HOHAHA experiments revealed, in addition to the isolated $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - and $\mathrm{CHCH}_{2} \mathrm{CH}_{2}$ - systems, the presence of the partial structure \mathbf{f}, and of an isolated methylene, $\delta 0.85$ and 0.01 , which was placed in a cyclopropane ring (\mathbf{g}) because of its high field shifts. All these data suggested an arrangement as that reported in $\mathbf{4}$, which was confirmed by a series of diagnostic ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long-range heterocorrelations (Table 1) connecting $\mathrm{C}-25(\delta 17.54)$ to $\mathrm{H}-10(\delta 1.96)$; $\mathrm{C}-11(\delta 34.65)$ to $\mathrm{H}_{3}-28(\delta 0.88)$, to $\mathrm{H}-9$ ($\delta 1.25$), and to $\mathrm{H}-12(\delta 1.69)$; $\mathrm{C}-1(\delta 31.90)$ to $\mathrm{H}-12(\delta 1.69)$ and $\mathrm{H}-3(\delta 2.31)$; C-7 ($\delta 77.64$) to $\mathrm{H}-9(\delta 1.25)$; $\mathrm{C}-10(\delta 27.98)$ to $\mathrm{H}_{3}-28(\delta 0.88)$; $\mathrm{C}-5(\delta 82.58)$ to $\mathrm{H}_{3}-27$ (δ 1.35); $\mathrm{C}-4(\delta 217.93)$ to $\mathrm{H}_{3}-26(\delta 1.29)$ and $\mathrm{H}-2(\delta 1.48)$.

Relative stereochemistry at $\mathrm{C}-7, \mathrm{C}-1$, and $\mathrm{C}-11$ was suggested by a ROESY experiment which revealed a positive effect between $\mathrm{H}-7$ ($\delta 3.45$) and $\mathrm{H}-2(\delta 1.93$) supporting a trans orientation between $\mathrm{H}-7$ and C -25. In addition, $\mathrm{H}-7$ displayed a positive nOe with the protons of $\mathrm{C}-27(\delta 1.35)$.

No evidence was obtained for the stereochemistry at $\mathrm{C}-10$, which remains undetermined even though the absence of nOe effects between $\mathrm{H}-25$ and $\mathrm{H}-10$ favors a structure where the methyl at $\mathrm{C}-10$ and the cyclopropane methylene ($\mathrm{C}-25$) bridge are cis oriented. Regrettably, H-25 ($\delta 0.85$) and H-28 ($\delta 0.88$) cannot give detectable nOe effects because their chemical shifts are too close. The downfield ${ }^{13} \mathrm{C}$-nmr chemical shift of C-12 ($\delta 40.56$) further supports this hypothesis. According to the previously reported structures (1,2), we assume that both H-7 and $\mathrm{H}-18$ must exhibit the same relative stereochemistry. No evidence was obtained about the absolute stereochemistry of 4, but its co-occurrence with $\mathbf{1}$ and 2 , and the exhibition of a positive cd absorption at ca. 302 nm , analogous to the 4 -oxo-derivative of $\mathbf{1}$ and the 21 -oxo-derivative of $\mathbf{2}$, suggested the same absolute stereochemistry for all triterpenoids co-occurring in R. aculeata.

EXPERIMENTAL

General experimental procedures.-Ft-it spectra were recorded with a Perkin-Elmer 1760-X FT-IR. Optical rotations were recorded on a JASCO DIP 370 polarimeter, and cd measurements were carried out on a JASCO-7 10 dicograph. Low resolution ms was determined on a Kratos MS 30. Hrms was obtained on a Kratos MS 50 spectrometer. Hplc was performed on a Waters apparatus equipped with a differential refractometer. Commercial Merck Si gel ($70-230$ mesh ASTM) was used for cc. Analytical tlc was carried out using precoated Si gel Merck F_{254} plates.

Extraction and isolation of 4.-R. aculeata was collected in Blanes (NE, Spain) during January 1990, by hand using SCUBA in an overhang at a depth of $10-15 \mathrm{~m}$. A voucher specimen is deposited at the Centre d'Estudios Avanzados (Blanes). Fresh sponge (12.5 g dry wt after extraction) was cut into small pieces and exhaustively extracted with $\mathrm{Me}_{2} \mathrm{CO}$ at room temperature. Solvent was removed under reduced pressure, and the aqueous residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$. After evaporation, the $\mathrm{Et}_{2} \mathrm{O}$-soluble fraction (oil, 1.3 g) was chromatographed on a Si gel flash column. Elution started with petroleum ether and the polarity of the eluent gradually increased with $\mathrm{Et}_{2} \mathrm{O}$ to afford the main metabolite raspacionin [1] (150 mg), tlc $R_{f} 0.45$ [petroleum ether- $\mathrm{Et}_{2} \mathrm{O}$ (1:1)], and a fraction containing a mixture of triterpenoids homogeneous by tlc (110 mg), $R_{f} 0.70$. This fraction was further purified by means of reversed-phase hplc carried our using a Spherisorb ODS2 column ($12 \times 250 \mathrm{~mm}$, particle size $5 \mu \mathrm{~m}$, flow $2.5 \mathrm{ml} / \mathrm{min}$) and $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(8: 2$) as eluent to obtain raspacionin A [2] (60 mg) and raspacionin B [4] (20 mg).

Raspacionin B [4].-Amorphous white compound: $[\alpha]^{25} \mathrm{D}+10.8^{\circ}\left(c=0.21, \mathrm{CHCl}_{3}\right)$; cd (concn, $2.83 \times 10^{-3} \mathrm{M}$; EtOH) 20° [θ] $302.90+10490$; ir $v \max$ (liquid film, CHCl_{3}) 2987, 2951, 2870, $1732,1714 \mathrm{~cm}^{-1}$; eims m / z (rel. int.) $\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]^{+} 472(0.15),\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right]^{+} 412(100)$, $\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}-\mathrm{CO}^{+} 384(10),\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}-2 \mathrm{CO}\right]^{+} 356(0.15),\left[\mathrm{M}-2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}-\right.\right.$
$\left.\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right]^{+} 354$ (11), $\left[\mathrm{M}-2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}-\mathrm{CO}^{+} 326\right.$ (7), $\left[\mathrm{M}-2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}-2 \mathrm{CO}-\right.$ $\mathrm{CH}_{2} \mathrm{~J}^{+} 312$ (7), 298 (10), 269 (8), $190(90), 176$ (85); hreims $m / z 472.3146\left(\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{5}\right.$ requires 472.3188); ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nmr data see Table 1 ; relevant nOe data $\delta 0.56\left(1.47, \mathrm{H}_{3}-2 \% ; 2.90, \mathrm{H}-18\right) ; 2.90$ (0.56, H-14; 1.28, $\mathrm{H}_{3}-30 ; 1.47, \mathrm{H}_{3}-29 ; 1.58, \mathrm{H}-17$); 3.45 (1.35, $\mathrm{H}_{3}-27 ; 1.93$, H-2).

$$
\begin{aligned}
& \text { 4-Oxo-derivative of raspacionin.-Cd (concn, } \left.2.19 \times 10^{-3} \mathrm{M} ; \mathrm{EtOH}\right) 20^{\circ}[\theta]_{302.00}+2479 . \\
& \text { 21-Oxo-derivative of raspacionin A.-Cd (concn, } \left.7.20 \times 10^{-3} \mathrm{M} ; \mathrm{EtOH}\right) 20^{\circ}[\theta]_{300.40}+2292 .
\end{aligned}
$$

NmR EXPERIMENTS.-1D and 2D nmr spectra were recorded at room temperature with a Bruker AMX-500 spectrometer (${ }^{1} \mathrm{H}, 500.13 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 125.76 \mathrm{MHz}$), equipped with an X32 data system. 1D nOe experiments were performed with a Bruker WM 250 spectrometer. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nmr chemical shifts were referenced to CHCl_{3}, resonating at $\delta 7.26$ and 77.00 ppm , respectively. The DEPT spectra were obtained using polarization transfer pulses of 135°. Two-dimensional experiments were performed using standard Bruker microprograms.
${ }^{1} H^{-}{ }^{1} H$ COSY. -The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum was obtained acquiring 96 transients each for 512 values of evolution period. Before Fourier transformation, the data were multiplied with sine-bell in both dimensions and zero filling was applied in the F_{1}.
${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ shift correlation proton decoupled.-Polarization transfer delays were set to average one-bond coupling of $J_{(\mathrm{C}-\mathrm{H})}=135 \mathrm{~Hz}$, and 320 scans for each of the 256 increments were acquired. The resulting data matrix was multiplied, before Fourier transformation, with $\pi / 5$ shifted sine-bell in F_{2} and $\pi / 10$ shifted squared sine-bell in F_{1} dimensions and zero-filled once in F_{1}.
${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long range shifi correlation.-All the parameters are the same as those utilized for the direct het-ero-correlation, except for the polarization transfer delay that was set to an average $J_{(\mathrm{C}-\mathrm{H})}=10 \mathrm{~Hz}$ and the number of scans that was 896 for each of the 128 increments.

HOHAHA.-For the HOHAHA experiment 96 scans were accumulated for each of the 512 increments. The mixing time chosen was 50 msec . $\mathrm{A} \pi / 12$ and $\pi / 10$ shifted squared sine-bell was applied in F_{2} and F_{1} dimensions, respectively, before Fourier transformation.

ROESY.-For each of the 256 increments, 64 scans were accumulated. The mixing time chosen was 150 msec . A $\pi / 3$ shifted squared sine-bell was applied in both dimensions before Fourier transformation.

HMQC. -For each of the 512 increments, 64 scans were accumulated. The resulting data matrix was multiplied, before Fourier transformation, with a $\pi / 3$ shifted sine-bell in F_{2} and a $\pi / 8$ shifted sine-bell in F_{1}.
$2 D J$-resolved. -For each of $256 \tau_{1}$ increments, 64 transients were collected. The resulting data matrix was multiplied, before Fourier transformation, with sine-bell in both dimensions.

ACKNOWLEDGMENTS

The authors are grateful to Mrs. M.R. Mosca for continuous technical support, to Mr. R. Turco for graphic assistance, and to Mr. G. Scognamiglio for the cd measurements. The nmr spectra have been recorded at the ICMIB-NMR Service. Mass spectra were provided by the Servizio di Spettrometria di Massa. Staffs of both services are gratefully acknowledged. This work was supported by CEE project "Sciences and Technologies Marines MAST II" Contract MAS2-CT 91-0004.

LITERATURE CITED

1. G. Cimino, A. Crispino, C.A. Mattia, L. Mazzarella, R. Puliti, E. Trivellone, and M. Uriz, Tetrabedron Lett., 31, 6565 (1990).
2. G. Cimino, A. Crispino, R. de A. Epifanio, A. Madaio, C. A. Mattia, L. Mazzarella, R. Puliti, E. Trivellone, and M. Uriz, Tetrabedron, 48, 9013 (1992).
3. U. Shmueli, S. Carmely, A. Groweiss, and Y. Kashman, Tetrabedron Lett., 22, 709 (1981).
4. S. Carmely and Y. Kashman, J. Org. Chem., 48, 3517 (1983).
5. S. Carmely, Y. Loya, and Y. Kashman, Tetrabedron Lett., 24, 3673 (1983).
6. S. Carmely and Y. Kashman, J. Org. Chem., 51, 784 (1986).
7. S. Carmely and Y. Kashman, Magn. Reson. Cbem., 24, 332 (1986).
8. I. Ohtani, T. Kusumi, Y. Kashman, and H. Kakisawa, J. Am. Chem. Soc., 113, 4092 (1991).
9. I. Ohtani, T. Kusumi, Y. Kashman, and H. Kakisawa, J. Org. Chem., 56, 1296 (1991).
